有机光伏 (OPV) 正迅速成为一种有前途的可再生能源,其特点是具有许多吸引人的特性,包括良好的能量转换效率 (PCE)、可调的光学透明度以及通过溶液处理技术实现低成本制造的潜力。近年来,在提高小分子受体 (SMA) OPV 性能方面取得了重大进展,通过合成具有不同功能的新有机分子、优化薄膜形貌、利用创新的电荷传输层和设计器件架构,实现了超过 20% 的 PCE。然而,高性能SMA-OPV 往往缺乏长期稳定性和机械强度,主要是由于 SMA 分子在光照和热量下快速扩散导致共混物形态退化,而这源于其低玻璃化转变温度 (Tg) 和高扩散系数。
在之前的研究中,我们合成了一种二聚化受体 DIBP3F-Se,通过将 Y6 衍生物与硒吩桥单元连接并采用 O 形构象,通过端基 IC 基团之间强大的分子内 π-π 相互作用形成独特的“构象锁”,实现了超过 18% 的 PCE。尽管如此,这些二聚体的分子堆积相对较低,导致复合率高于基于 SMA 的 OPV。
鉴于此,阿卜杜拉国王科技大学/曼彻斯特大学Thomas D. Anthopoulos团队的凌曌恒(第一作者,通讯作者) 与 查尔莫斯理工大学吴敬男 (共一作者) 合成了非对称非富勒烯 SMA BTP-J17,并将其作为第三组分加入 PM6:DIBP3F-Se 共混物中。发现 BTP-J17 扩散到宿主供体/受体界面,从而增强了电荷分离并提高了载流子迁移率。至关重要的是,BTP-J17 通过促进 DIBP3F-Se 的均匀分布和增强分子堆积来减少能量损失,从而提高开路电压 (VOC = 0.941V),同时保持高 JSC(26.7mAcm−2),从而使 OPV 的最大 PCE 为 19.6%。将三元PM6:DIBP3F-Se:BTP-J17 (1:1:0.6 (wt%)) 混合物与乙基紫精 (EV) 进行 N 型掺杂并使用 MgF2 作为抗反射涂层,可将 PCE 提高到最大值 20.5%。随后研制的三元OPV表现出了增强的运行稳定性,在沙特阿拉伯炎热潮湿的环境下连续7周的户外测试后仍能保持其初始PCE的80%。
该成果以“20.5 % efficient ternary organic photovoltaics using an asymmetric small-molecular acceptor to manipulate intermolecular packing and reduce energy losses”为题,发表在Materials Science and Engineering: R: Reports上。
Fig. 1.Structure and physical properties of the active materials used in this study. (a) Molecular structures of PM6, DIBP3F-Se, and BTP-J17. (b) The absorption spectra of the PM6, DIBP3F-Se, and BTP-J17 neat films. (c) Energy levels of PM6, DIBP3F-Se, and BTP-J17. (d) The corresponding IP and OOP profiles of DIBP3F-Se and BTP-J17 acceptor films. (e) The CCL and dπ-π values of the DIBP3F-Se and BTP-J17 acceptor films.
Fig. 2.Solar cell architecture and characterization. (a) Schematic structure of the cells developed in this study. (b) J-V characteristics of the different cells. (c) EQE spectra obtained from the corresponding OPVs. (d) TRPL decays of binary and ternary BHJ systems; J-V curves measured for electron-only (e) and hole-only (f) devices based on the binary and ternary BHJs. (g) TDCF measurements of PM6:DIBP3F-Se and PM6:DIBP3F-Se OPVs. (h) TDCF measurements of PM6:DIBP3F-Se and PM6:DIBP3F-Se:BTP-J17 OPVs. (i) TPV spectra of PM6:DIBP3F-Se and PM6:DIBP3F-Se:BTP-J17 OPVs.
Fig. 3.Morphological characterizations of different blend layers. (a)-(b) Top images: AFM Phase images of the relevant blends. (c)-(d) KPFM images of relevant blends. (e) Surface height distribution of relevant blends. (f) Surface potentials measured for the binary and ternary blends. (g)-(h) 2D GIWAXS patterns of the relevant BHJs. (i)-(j) IP and OOP extracted line-cut profiles for the two blend layers.
Fig. 4.Blend and device physics characterization. (a) TOF-SIMS for the BHJ films. (b) Depth-Profile XPS for the BHJ films. (c) The sEQE and EL spectra of PM6:DIBP3F-Se OPV. (d) The sEQE and EL spectra of PM6:DIBP3F-Se:BTP-J17 OPV. (e) EL quantum efficiencies of PM6:DIBP3F-Se based binary and PM6:DIBP3F-Se:BTP-J17 based ternary OPVs. (f) Schematic diagram for energy losses of the two types of OPVs.
Fig. 5.Stability analysis of binary and ternary BHJ-based OPVs. (a) Normalized PCE for the encapsulated cells measured at noontime every day. Inset: photographs depicting the actual devices used for the testing (left and right) and the outdoor experimental settings (middle). The outdoor stability analysis was carried out within the KAUST campus in Thuwal, Kingdom of Saudi Arabia, from April 18th to June 12th 2024. The average relative humidity during the testing period was ≈ 63 %. J–V curves were measured every 10 min during the daytime. (b) Solar irradiance measured during the test period. (c) Air temperature measured during the test period. Power generation density (PGD) of the encapsulated (d) PM6:DIBP3F-Se and (e) PM6:DIBP3F-Se:BTP-J17 cells, respectively.
参考文献
20.5 % efficient ternary organic photovoltaics using an asymmetric small-molecular acceptor to manipulate intermolecular packing and reduce energy losses
Zhaoheng Ling*, Jingnan Wu, José P. Jurado a, Christopher E. Petoukhoff, Sang Young Jeong, Dipti Naphade, Maxime Babics, Xiaoming Chang, Hendrik Faber, Spyros Doukas, Elefterios Lidorikis, Mohamad Insan Nugraha, Mingjie He, Maryam Alqurashi, Yuanbao Lin, Xiaokang Sun, Hanlin Hu, Han Young Woo, Stefaan De Wolf, Leonidas Tsetseris, Frédéric Laquai, Donghong Yu, Ergang Wang*, Thomas D. Anthopoulos*
Materials Science & Engineering R 163 (2025) 100922
https://doi.org/10.1016/j.mser.2024.100922
学术交流QQ群
知光谷光伏器件学术QQ群:641345719
钙钛矿产教融合交流@知光谷(微信群):需添加编辑微信
为加强科研合作,我们为海内外科研人员专门开通了钙钛矿科创合作专业科研交流微信群。加微信群方式:添加编辑微信pvalley2024、pvalley2019,备注:姓名-单位-研究方向(无备注请恕不通过),由编辑审核后邀请入群。