爱因斯坦的相对论,这一理论科学的巨擘,广为人知,可能不是人人都能透彻理解,但大名鼎鼎的名头却是无人不晓。
在这理论的基石中,最关键的理念之一便是光速极限——它指出光速是自然界中的速度极限(也是信息传递速度的极限)。
我们为何要说光速是宇宙速度的极限,为何不能超越它呢?
固然有深奥的专业书籍对此进行了阐释,但往往充斥着难解的数学公式。在此,我们尽量以平易近人的方式来解答这个问题。
不过,通俗化往往意味着牺牲一定的精确性,还请读者理解。
简而言之,光速不可逾越的事实源自实验观察。
相对速度的概念是基础的,哪怕是小学生也能理解。
例如,我们两人分别以每秒5米的速度相对而跑,那么我们的相对速度就是每秒10米,这是常识。
而光速无法被超越,正是通过类似的相对速度实验所发现。
具体的情况是这样的:
我们都知道地球在持续自转,随着日出日落,我们朝向或背离太阳的运动是不断变化的。
若将太阳发出的光看作是一颗颗的“光弹”,那么根据常识,我们会认为日出时,因地球朝太阳方向移动,“光弹”的速度似乎应该增加;而日落时,地球背离太阳,光速则应该减慢。
然而,科学家们在20世纪初所做的实验中,却得到了一个出乎意料的结果。
他们发现,无论在日出还是日落时测量,太阳光的速度都是恒定的——也就是光速。
这该如何解释?如果将此结果类比到日常生活中,就像是我们两人以每秒5米的速度奔跑,然后又以同样的速度相对而行,却发现双方的速度测算结果完全相同。
这会是何种感受?你会不会质疑:“难道数学是体育老师教的吗?”
但事实就是如此,尽管它令人匪夷所思,我们不得不接受这一结论,因为这是经过反复实验验证的。
当时,科学家们对此结果抱有强烈的怀疑态度(毕竟传统的绝对时空观根深蒂固),他们认为实验中一定存在某种错误。然而,即使经过反复校验,结果始终如一。
科学家们甚至提出了“绝对参照系”——以“以太”作为解释这一奇异现象的尝试。但最终,以太不仅没有解决问题,反而造成了更多的困惑。
这时,一位默默无闻的瑞士专利局职员发表了一篇论文,他指出,既然实验已经证明光速无论如何测量都是恒定的,那为何不直接假设光速在所有参照系下都是不变的呢?
这位职员便是爱因斯坦,他运用“奥卡姆剃刀”原理剔除了以太,由此,相对论横空出世。
光速不变不仅仅是字面上的含义,它意味着许多深远的影响。这里,我们通过一个简单的例子来加以说明。
假设我打开手电筒,在我眼中,手电筒光线的速度为光速C。
如果我在打开手电筒的同时,你与光线一起移动,且速度为光速的一半。
根据光速不变的原理,在你看来,光线的速度同样为光速C。
如果我观测到光线移动了2公里,那么你应当移动了1公里。然而在我眼中,你所观测到的光线移动了多远呢?
由于光线与你是同向移动,根据相对速度的原理,在我眼中,你应当看到光线移动了1公里。(注意,我始终在强调“在我眼中”)
根据光速不变的原理,2公里除以“我的时间”应当等于1公里除以“你的时间”,且两者都等于光速。
显而易见,为了使这个等式成立,“我的时间”必须比“你的时间”过得更快,也就是说,在你眼中的时间显得变慢了!
这就是时间膨胀效应的通俗解释。无需复杂的数学公式,我们就可以理解这一现象。(正如我之前所述,通俗的解释往往不够严谨。至于为什么,我们稍后再解开这个谜团)
可能会有人问,为什么在上述的例子中,我要反复强调“在我眼中”?这是因为我们需要明确参照系,避免在不同的参照系间混淆,导致理解上的困扰。许多人对相对论感到困惑,往往是因为他们不自觉地在不同的参照系间切换。
回到之前的例子,“在我眼中”你移动了1公里,但根据光速不变的原理,“在你眼中”光线移动了2公里,这并不矛盾,因为我们处在两个不同的参照系中。
这里需要再次强调,“相对论”之所以得名,是因为它摒弃了“绝对参照系”的观念,每个参照系都是等价的、独立的,且在每个惯性参照系中,物理定律均成立,光速的测量值都是恒定的。
换句话说,在广义相对论推广后的任何参照系中,物理定律和实验的结果都是一致的。
正如之前的例子,我以“我”为参照系进行分析,但你完全可以用“你”作为参照系来进行同样的分析,结果是相同的。具体的分析过程这里不再赘述,有兴趣的读者可以自行尝试。