学习米勒麻醉学中文版13章有感
苏州工业园区星海医院 刘岗
《米勒麻醉学》被誉为麻醉学界的圣经,是全球公认的经典和权威学术著作。通过深入学习并将其应用于临床实践,可以显著提升我们的临床处理能力和科研创新能力。
呼吸生理学对于麻醉医生的重要性,不亚于心电生理学对心内科医生的重要性,这一点怎么强调都不为过。最近,我深入研读了《米勒麻醉学》中文版第13章——呼吸生理学与病理生理学,受益匪浅。但也感觉有些内容的理解与自己的不一致,我觉得应该提出来,以期抛砖引玉,共同探讨。
困惑1. 344页 当中一段
三价铁离子(Fe3+)代替二价亚铁离子(Fe2+)与O2结合,形成高铁血红蛋白(MetHb)。MetHb与O2的结合能力减弱,导致O2含量降低,运输减少若无肺疾病,则PaO2正常,因而通过PaO2估算O2含量,则O2含量是正常的;但直接测定O2含量,则O2含量是降低的。相反,MetHb水平升高。在严重病例中,则因O2运输力下降而发展为乳酸酸中毒。同时,尽管MetHb的比例很少,但由于MetHb是蓝褐色的,患者仍会呈现出蓝色,应用特殊的氧测量法可以测定MetHb水平。氧疗对于明显的发绀治疗效果并不佳,其治疗为使MetHb转化(还原)成Hb(例如通过亚甲蓝)。形成MetHb的医源性原因包括苯佐卡因、氨苯砜及易感人群吸入一氧化氮(NO)。
Methemoglobin(MetHb), formed by the oxidation to Fe3+(ferric)instead of the usual Fe2+ (ferrous), is less able to bind O2, resulting in diminished O2 content and less O2 delivery. Here, the PaO2(in the absence of lung disease) will be normal: if the O2 content is calculated from the PaO2, it will appear normal, but if measured it will be low.In contrast, MetHb level will be elevated. In severe cases, lactic acidosis develops because of impaired O2 delivery.In addition, because MetHb has a blue-brown color, the patient will appear blue, even if the fraction of MetHb is modest and specialized oximetry can separately measure MetHb levels. The apparent cyanosis is not responsive to supplemental O2, and therapy involves converting (i.e., reducing) the MetHb to Hb (e.g., by using methylene blue). Important medical causes of MetHb include benzocaine; dapsone; or in susceptible patients, inhaled nitric oxide(NO).
1. In contrast,MetHb level will be elevated. 为啥会说“相反",怎么理解“相反"?
提到的“相反"一词,是指与正常血红蛋白(Hb)的功能相比较。正常血红蛋白的主要功能是携带氧气(O2),而高铁血红蛋白(MetHb)由于铁离子处于Fe3+状态,其携带氧气的能力大大降低。因此,当血红蛋白被氧化成高铁血红蛋白时,它就不能再有效地结合和输送氧气,导致血液中的氧气含量降低。
这里的“相反"是在强调高铁血红蛋白与正常血红蛋白在功能上的对比:正常血红蛋白(Fe2+状态)能够有效地结合氧气,提高血液中的氧气含量。而高铁血红蛋白(Fe3+状态)则不能有效地结合氧气,导致血液中的氧气含量降低。所以,当提到“相反",是在说明高铁血红蛋白与正常血红蛋白在结合氧气能力上的对立情况。正常血红蛋白有助于提高氧气含量,而高铁血红蛋白则导致氧气含量降低。因此,即使动脉血氧分压(PaO2)正常,实际的氧气含量却是低的,因为高铁血红蛋白不能有效地携带氧气。
本来上面就说到“高铁血红蛋白降低氧含量",所以这里搞个相反很别扭,这么翻译,相当于又否定了“高铁血红蛋白降低氧含量",这里是从另一角度讲问题,所以和后面的应该合并翻译:
我的理解:另一方面,重度高铁血红蛋白病例中,则因O2供下降而出现乳酸酸中毒
2.同时,尽管MetHb的比例很少,但由于MetHb是蓝褐色的,患者仍会呈现出蓝色,应用特殊的氧测量法可以测定MetHb水平
In addition, because MetHb has a blue-brown color, the patient will appear blue, even if the fraction of MetHb is modest and specialized oximetry can separately measure MetHb levels.
这句话的逻辑关系不对,正确的逻辑关系,应该是这样的:
1.高铁血红蛋白因其颜色导致患者皮肤呈现蓝色。
2.这种颜色的影响是显著的,即使高铁血红蛋白的比例并不非常高。
3.这种颜色的影响是显著的,也使得专业的脉搏血氧仪能够检测出这种高铁血红蛋白,从而单独测量其水平。
我的理解:高铁血红蛋白因其显著的蓝棕色,即使在比例不高的情况下,也足以让患者皮肤呈现蓝色,这种显著的颜色特征也是专业脉搏血氧仪能够检测出高铁血红蛋白水平的机制之一。
3.The apparent cyanosis is not responsive to supplemental O2, and therapy involves converting (i.e., reducing)the MetHb to Hb(e.g., by using methylene blue)。氧疗对于明显的发绀治疗效果并不佳,其治疗为使MetHb转化(还原)成Hb(例如通过亚甲蓝)。
这句话翻译的有点突兀,没有明显的与上文联系起来
发绀是指血液中还原血红蛋白增多(超过50g/L),致皮肤与黏膜呈现青紫色的现象。但广义的发绀也包括少数由于异常血红蛋白衍生物(高铁血红蛋白、硫化血红蛋白)所致的皮肤黏膜青紫现象。
高铁血红蛋白引起的发绀是由于血液中高铁血红蛋白含量增加,导致皮肤黏膜呈现特殊的蓝紫色,而不是由于组织缺氧引起的发绀。因此,补充氧气并不能改善这种发绀现象。
我的理解:当高铁血红蛋白致明显发绀时,氧疗无效,其治疗应将MetHb转化(还原)成Hb(例如通过亚甲蓝)。
困惑2. 344页 最后一段
体循环静脉血(中心静脉血)通过右心房进人右心室。不同大静脉中的0,饱和度(SO2)是不同的:静脉血SO2高说明血流充足、组织氧摄取低,或者两者兼有。与上腔静脉相比,下腔静脉的SO2相对较高,原因可能是相对于氧耗而言,肾和肝的血流较多。在右心室,来自上腔静脉和下腔静脉的中心静脉血(ScO2)与来自冠状循环的静脉血(通过冠状窦)混合,另外还有少量引流自心肌的静脉血通过心最小静脉流人。所有的这些静脉血充分混合后进入肺动脉称为“混合静脉血"(SO2),因此SO2 2,尽管两者通常呈平行趋势
Systemic venous blood (central venous blood) enters the right ventricle via the right atrium. The O2 saturation(SO2)differs among the major veins: higher venous SO2 reflects greater blood flow, less tissue oxygen uptake, or both.SO2 is usually higher in the inferior vena cava(IVC)than in the superior vena cava(SVO2), possibly because of the high renal and hepatic flow relative to O2 consumption. In the right ventricle, the central venous blood (ScvO2) from the SVC and IVC, is joined by additional venous blood from the coronary circulation(via the coronary sinuses). In the right ventricle, an additional small amount of venous drainage from the myocardium enters through the Thebesian veins, and as all this venous blood enters the pulmonary artery it is well mixed and is termed mixed-venous blood(SvO2); thus, SvO2 < ScvO2, although the trends of each usually run in parallel
possibly because of the high renal and hepatic flow relative to O2 consumption.原因可能是相对于氧耗而言,肾和肝的血流较多
别扭的很,肾脏和肝脏是身体中两个主要的代谢活跃器官,它们需要大量的血液供应来完成其功能,比如过滤血液、排泄废物、产生激素、代谢药物和毒素等。这些器官的血流量很大,但是它们对氧气的消耗相对于它们的血流量来说并不是特别高。这意味着,尽管这些器官需要大量的血液来支持其功能,但它们并没有消耗掉所有的氧气,因此在血液流经这些器官后,血液中仍然保留了较高的氧气含量。
我的理解:原因可能是相对于肾脏和肝脏的高氧耗,其血流量更高
困惑3. 345页。右边最后一段
阻塞性肺疾病导致吸入气体流向通气充足但灌注不良的肺组织,使这部分肺组织的通气/血流比升高(高V/Q),相当于增加了Vd/Vt(图13.1)。严重的慢性阻塞性肺疾病(chronic obstructive pulmonarydisease,COPD)患者Vd/Vt甚至达到0.9,这类患者需要非常大的通气量(30~50L/min)以维持正常的PaCO2,当通气储备减弱时则难以维持。上述患者表现为Va降低,而Ve常常增加。一个重要的代偿机制是PaCO2增加时,较低水平的VA可维持CO2排出稳定(框 13.1)。
Obstructive lung disease can result in diversion of inspired air into(nonobstructed) ventilated, but poorly perfused, regions of the lung. This results in local excesses of ventilation versus perfusion(high VA/Q ratio)in such regions,which is equivalent to an increase in VD/VT(see Fig. 19-1). Patients with severe chronic obstructive pulmonary disease(COPD)may have a VD/VT ratio of up to 0.9, and would have to hyperventilate massively(30 to 50 L/min) to maintain normal Paco2, which is not possible where ventilator reserve is diminished. Such patients demonstrate reduced VA but often have an elevated VE. An important compensatory mechanism is that a lower level of VA will maintain stable CO2 excretion where the Paco2 is increased(Box 19-1)
怎么理解这个stable
这里的“stable"指的尽管VA降低,PaCO2可能高于正常,但通过某种代偿机制,身体能够保持二氧化碳的排出量在一个相对稳定的水平,不至于让PaCO2进一步升高到危险的程度。这种代偿机制有助于防止由于CO2积聚导致的酸中毒(高碳酸血症)。
所以这里的stable不是排出稳定,排出稳定就不会升高PaCO2了,应该是“排出量"稳定,这里还有个转折语气
我的理解:一个重要的代偿机制是PaCO2增加时,VA虽较低,但仍可维持CO2排出量稳定(框13.1)。
困惑4. 346 右边中下
顺应性(弹性的倒数)表示在一定水平的PTp(压力,cmH2O)下所能达到的膨胀程度(容积,L),通常为0.2~0.3 L/cmH2O。与大多数弹性结构相似,虽然高Ptp能使肺膨胀更大,但施加的压力与其导致的容积增大之间的关系是曲线型的(图13.3)。肺顺应性依赖于肺容积,当FRC极高或极低时,顺应性最差(图13.3)。在以肺顺应性下降为特征的肺疾病中(例如ARDS 、肺纤维化、肺水肿),压力﹣容积(P-V)曲线变得平坦且右移(图13.4)。相反,虽然肺气肿患者的弹性组织减少,但是肺组织总量(通过CT影像显示)减少意味着顺应性增加,P-V曲线左移,并变得陡峭(图13.4)
Compliance—the reciprocal of elastance—is the term that expresses how much distention (volume in liters) occurs for a given level of PTP (pressure, cm H2O); it is usually 0.2 to 0.3 L/cm H2O.24 However, although higher values of PTP maintain greater levels of lung opening, the relationship— as with most elastic structures—between applied pressure and resultant volume is curvilinear(Fig. 13.3).Lung compliance depends on the lung volume; it is lowest at an extremely low or high FRC(see Fig. 13.3). In lung diseases characterized by reduced compliance (e.g., ARDS, pulmonary fibrosis, or edema), the pressure-volume(PV)curve is flatter and shifted to the right (Fig. 13.4).In contrast, although emphysema involves the loss of elastic tissue, the overall loss of lung tissue (as seen on computed tomography [CT] scanning)means that the compliance is increased; the PV curve is therefore shifted to the left and is steeper (see Fig. 13.4)
In contrast, although emphysema involves the loss of elastic tissue, the overall loss of lung tissue (as seen on computed tomography [CT] scanning)means that the compliance is increased;相反,虽然肺气肿患者的弹性组织减少,但是肺组织总量(通过 CT 影像显示)减少意味着顺应性增加
这句话的逻辑关系怎么理解?although的句子和后面的主句并不转折,弹性组织的丧失,就意味着弹性阻力下降,那弹性阻力下降,不就是顺应性增加吗?为啥是转折呢
理解这句话的关键在于清晰区分“弹性组织丧失"与“整体肺组织丧失"之间的关系,以及它们对肺顺应性的影响。
逻辑分析
1.弹性组织的丧失:肺气肿确实涉及弹性组织的丧失。这会导致弹性阻力的下降,弹性组织的减少使得肺部在被拉伸时更容易扩张,也就是增加顺应性。
2.整体肺组织的丧失:然而,肺气肿不仅仅是弹性组织的丧失,它还伴随着整体肺组织的损失。尽管弹性组织的丧失可能导致顺应性增加,但整体肺组织的丧失会导致更大的体积改变,进而进一步增加顺应性。从而更大程度上影响了顺应性。因此,尽管弹性组织的丧失可能是增加顺应性的一个因素,但整体肺组织的丧失才是增加顺应性的主要原因。
所以,这句话强调的是肺气肿对顺应性的影响是多方面的,整体肺组织的损失在顺应性增加中起到了更为关键的作用。
我的理解:另一方面,虽然肺气肿患者的弹性组织减少会增加顺应性,但是肺组织总量减少(通过CT影像证实)才是顺应性增加的主要原因
困惑5. 346 右边上面
学习呼吸力学让我们知道吸入气体是如何在肺内分布的,以及量化肺部疾病的严重程度。整体呼吸阻抗包括弹性(顺应性的倒数),阻力和惯性。
The study of respiratory mechanics tells us how inspired air is distributed within the lung and permits quantitation of the severity of lung disease. The components of overall impedance to breathing results from elastance (the reciprocal of compliance), resistance, and inertia.
我的理解:整体呼吸阻抗包括弹性阻力(顺应性的倒数)、黏性阻力和惯性阻力
困惑6. 347页 左边 最后一段 呼吸系统阻力
气道
阻力阻碍气流进入(或者离开)肺组织。阻力主要由气道(大气道和小气道)阻力组成,小部分由吸气(和呼气)过程中肺和胸壁组织的移动组成。驱动压力能够克服阻力。在自主呼吸时,驱动压力是 PPL ;正压机械通气时,施加在气管导管( PAW ,"来源")和肺泡( PALV ,"目标")的压力是不同的。阻力( R )等于驱动压力(△ P )除以形成的气流( F ):
Airways
Resistance impedes airflow into(and out of) the lung. The major component of resistance is the resistance exerted by the airways(large and small), and a minor component is the sliding of lung and the chest wall tissue elements during inspiration(and expiration).Resistance is overcome by (driving)pressure. In spontaneous breathing, driving pressure will be the PPL; in positive pressure ventilation, the driving pressure will be the difference between the pressures applied to the endotracheal tube (PAW; “source") and the alveolus (PALV; “destination"). Resistance (R)is calculated as driving pressure(ΔP) divided by the resultant gas flow(F):
我的理解:黏性阻力阻碍气流进入(或者离开)肺组织。黏性阻力主要为气道(大气道和小气道)阻力,小部分由吸气(和呼气)过程中肺和胸壁组织的移动形成。驱动气体流动的压力需克服黏性阻力。自主呼吸时,驱动压力是PPL;正压机械通气时,驱动压力是施加在气管导管(PAW ,"来源")和肺泡( PALV ,"目标")的压力差。黏性阻力(R)等于驱动压(△ P)除以形成的气流速(F):
注意:专有名词驱动压克服的是弹性阻力,不是黏性阻力呢,这里的驱动压不是专有名词,就是泛指驱动气体流动的压力
困惑7. 348页 最后一段
多种因素可以改变气流阻力:①随着肺容积增加,阻力下降。这是肺容积增加(正压或者自主呼吸)使气道直径增大的直接结果。由于气道直径是阻力的关键性决定因素,所以此时阻力降低至很小的水平。呼气时恰好相反(图13.5)。但是肺容积达到残气量(residual volume , RV)时(例如麻醉状态),压缩的肺组织内气道同时变狭窄,阻力呈指数增加。主动或者被动通气时,这些影响显而易见。②主动通气还有其他影响。用力呼气会压缩小气道(不包括软骨组织)。另外,用力呼气还导致COPD患者的小气道气流发生湍流,腔内压力骤降,细支气管变得狭窄。导致呼出气流受限,多次呼吸后,最终发展成"动态性过度充气。COPD患者为了更容易呼吸,有时会采取对抗阻力的呼吸方式(或者"缩唇呼吸")。原理是通过增加呼气阻力减慢呼气流速。呼气流速减慢会降低驱动呼气的压力梯度(即肺泡内压力最高,至口腔压力逐渐降低)。沿着气管树存在一个点,在这个位置,气道内的压力刚好降低到小于气道外的压力(等于胸膜腔压力)。这个点从可塌陷的小气道移向口腔,移向不可塌陷的软骨性气道(图13.6),能预防小气道塌陷,而小气道对维持正常的气体交换至关重要。
Several factors can alter airflow resistance. First, resistance lessens as lung volume increases; this is intuitive, as increasing volume(positive pressure or spontaneous breathing)stretches the diameter of the airways. Because this is the key determinant of resistance, the resistance falls to a small extent. The opposite occurs with exhalation(Fig.13.5). However, as lung volume approaches residual volume(RV)—as can happen during anesthesia—the airways are narrowed in parallel with the compressing lung tissue and the resistance rises exponentially. These effects are apparent with active or passive ventilation. Second, active ventilation has additional effects. Forced expiration can compress small airways(i.e., that do not contain cartilage).In addition, forced expiration can cause turbulent flow in small airways in patients with COPD, precipitously dropping pressure in the lumen and thereby narrowing the bronchioles and resulting in expiratory flow limitation and, after multiple breaths, eventual“dynamic hyperinflation."Expiring against resistance(or pursed-lips breathing)is sometimes used by those with COPD to make breathing easier.This works by increasing expiratory resistance and slowing expiration.The slowed expiration reduces the pressure gradient driving expiration(i.e., pressure highest in the alveolus, lower toward the mouth).Therefore, the point along the airway tree at which pressure inside the airway has decreased to less than that outside the airway(equal to pleural pressure)is moved from smaller collapsible airways toward the mouth to noncollapsible, cartilaginous airways (Fig. 13.6); this prevents collapse of the smaller airways, which are vital for proper gas exchange.
1. 既然“随着肺容积增加,阻力下降",“吸气时气道阻力降低至很小的水平”,“呼气时恰好相反”,那就说明“呼气时气道阻力升至很高水平”,那为何“肺容积达到残气量时,气道阻力呈指数增加"也是说明“气道阻力升至很高水平",为何要转折,不应该是顺承关系吗?
这里就需要to a small extent语法上怎么理解?
"to a small extent" 这个短语在语法上是一个介词短语,用来修饰动词"falls",表示动作"falls" 发生的程度或范围。这里的 "to" 是一个介词,表示达到某种程度或状态,而 "a small extent" 则是指这种程度或状态的具体性质,即“小幅度"或“一定程度上"。
在这个短语中,"to" 不是表示方向上的“到",而是表示一种程度上的“达到"。因此,"the resistance falls to a small extent" 的意思是阻力有所下降,但下降的程度是小的。
如果要用 "to" 来表示“降至很小的水平",通常会有一个比较具体的目标状态,例如 "to a very low level" 或 "to minimal"。在这种情况下,"to" 后面的短语会明确指出下降的终点是一个很低或最小的状态。
因此,"the resistance falls to a small extent" 的意思是阻力下降了,但下降的幅度不大,而不是说阻力降至一个非常低的水平。这里的语法关键在于理解 "to" 与 "a small extent" 连用时,表示的是动作的程度,而不是结果的状态。
我的理解:由于气道直径是黏性阻力的关键性决定因素,所以此时气道阻力小幅降低。呼气时恰好相反,气道阻力小幅上升(图13.5)。但是肺容积达到残气量(residual volume , RV)时(正如麻醉状态下可能发生的),压缩的肺组织内气道同时变狭窄,黏性阻力呈指数大幅增加。
2. Expiring against resistance(or pursed-lips breathing)is sometimes used by those with COPD to make breathing easier.This works by increasing expiratory resistance and slowing expiration.The slowed expiration reduces the pressure gradient driving expiration(i.e., pressure highest in the alveolus, lower toward the mouth).Therefore, the point along the airway tree at which pressure inside the airway has decreased to less than that outside the airway(equal to pleural pressure)is moved from smaller collapsible airways toward the mouth to noncollapsible, cartilaginous airways(Fig.13.6); this prevents collapse of the smaller airways, which are vital for proper gas exchange.
COPD患者为了更容易呼吸,有时会采取对抗阻力的呼吸方式(或者"缩唇呼吸")。原理是通过增加呼气阻力减慢呼气流速。呼气流速减慢会降低驱动呼气的压力梯度(即肺泡内压力最高,至口腔压力逐渐降低)。沿着气管树存在一个点,在这个位置,气道内的压力刚好降低到小于气道外的压力(等于胸膜腔压力)。这个点从可塌陷的小气道移向口腔,移向不可塌陷的软骨性气道(图13.6),能预防小气道塌陷,而小气道对维持正常的气体交换至关重要。
“这个点”有个专有名称,叫“等压点",这个点为啥会移动,那是因为"缩唇呼吸",这个点也不是移向口腔,口腔不属于小气道范围,应该翻译成“向近端气道移动",不是“小气道对维持正常的气体交换至关重要",which指代this prevents collapse of the smaller airways,which可以翻译成“预防小气道塌陷",可以正话反说,翻译成“维持小气道通畅"
我的理解:缩唇呼吸时,等压点移向近端气道,移向不可塌陷的软骨性气道(图13.6),这能预防小气道塌陷,而维持小气道通畅对维持正常气体交换至关重要。
困惑8. 350页 右边中间
肺密度、重力和肺组织与胸腔形状的一致性造成肺底的局部PPL负值略小,因此形成PPL压力梯度。因为正常肺组织的密度约为0.3,所以高度每下降1cm,PPL增加0.3cmH0,肺损伤或肺水肿时PPL增加更多。甚至在实验室失重状态下,通气分布呈不均匀性降低,但PPL压力梯度并没有消失,因此非重力因素(例如组织、气道)也发挥作用。
The PPL gradient exists because lung density, gravity, and conformation of the lung to the shape of the thorax result in crowding of the basal lung tissue, making the local PPL less negative in the basal regions. Because the density of normal lung is approximately 0.3, PPL will become more positive by 0.3 cm H2O for each downward vertical centimeter, and more so with injured or edematous lungs.Indeed, experimentally induced weightlessness decreases inhomogeneity in the distribution of ventilation, but does not eliminate it; therefore, nongravitational(e.g., tissue, airway)factors also play a role
1.The PPL gradient exists because lung density, gravity, and conformation of the lung to the shape of the thorax result in crowding of the basal lung tissue, making the local PPL less negative in the basal regions
肺密度、重力和肺组织与胸腔形状的一致性造成肺底的局部PPL负值略小,因此形成PPL压力梯度。
第一句话的翻译,直接因果与间接因果搞反了,直接结果是形成了PPL gradient,间接结果是形成了the local PPL less negative in the basal regions,而原文翻译,搞错了直接与间接关系,
我的理解:肺密度、重力以及肺贴合胸廓的形状都使得肺底部组织拥挤,这就造成了PPL的梯度,从而使肺底部区域的局部胸膜腔压力不那么负
2.Indeed, experimentally induced weightlessness decreases inhomogeneity in the distribution of ventilation, but does not eliminate it; therefore, nongravitational(e.g., tissue, airway)factors also play a role
甚至在实验室失重状态下,通气分布呈不均匀性降低,但PPL压力梯度并没有消失,因此非重力因素(例如组织、气道)也发挥作用。
我的理解:事实上,实验性诱导的失重虽减少了通气分布的不均匀,但并未完全消除,因此非重力因素(例如组织结构、气道)也对通气不均匀分布起到一定作用。
困惑9. 350 页 图13.7
图 13.7 局部肺泡和气道容积示意图,左图示肺上部分(A)和下部分(B)。肺最顶端和最底端存在胸膜腔压力(PPL )梯度[- 6.5-1=-7.5(cmH2O)]。气道压(PAW)为大气压,或者自始至终都为0cmH,0。因此,在肺的上部分PAW>PPL",气道持续开放。相反,在肺较低部分PPL>PAW,导致气道闭合。闭合气道远端肺泡内气体随后被吸收,气道闭合可能进一步加重。右图是多种惰性气体清除技术得到的通气/血流比值分布图。可以看到,肺上部分肺泡开放和通气,形成“正常"的通气和血流(A)。另外还有一部分肺泡血流大于通气(B),形成低V/Q,这与呼吸时气道间歇性闭合一致
Schematic of regional alveolar and airway volume at an upper(A)and a lower(B)lung level(left panel). There is a vertical pleural pressure(PPL)gradient between the uppermost and lowermost regions(–6.5 to 1 =–7.5 cm H2O). Airway pressure(PAW)is atmospheric, or 0 cm H2O throughout; thus, in the upper regions, PAW > PPL maintains airways open. In contrast, in the lower regions, PPL > PAW causes airway closure—potentially exacerbated by subsequent alveolar gas absorption behind the occluded airway. The right panel shows the distribution of ventilation and perfusion ratios from the multiple inert gas elimination technique. A“normal" mode of ventilation and blood flow(A) can be seen corresponding to the open and ventilated alveoli in the upper parts of the lung. In addition, there is a range of low VA/Q ratios with more perfusion than ventilation(B). This pattern is compatible with intermittent airway closure during breathing.
我的理解:可见“正常"的通气和血流(A),这部分对应肺上部分开放和通气肺泡,另外还有一部分(B)低V/Q,这部分对应呼气时气道间歇性闭合的肺泡,这时肺泡的血流大于通气。
困惑10. 351页 右边 当中气体弥散 下面一段
在大气道和中等大小的气道中,气体呈成团流动(即对流),即在驱动压力梯度作用下,气体分子按照一定的平均速度整体流动。气流流经多个级别的支气管,净阻力逐级减小。第14级支气管后,气道与肺泡合并,参与气体交换(呼吸性细支气管)。横截面积大量增加(气管2.5cm,第23级支气管0.8m2,肺泡表面积140 m2),总阻力骤降。气体分子的总数是不变的,所以气流速度迅速下降,气体进入肺泡时流速极小(0.001mm/s),到达肺泡膜时为0。气流进入肺泡的速度比O2和CO2扩散速度慢一些,因此,扩散(而非对流)对末端气道和肺泡的气体运输是必要的。甚至屏气数秒后,在口腔仍能检测到CO2,这是快速扩散和心脏搏动(即混合)的共同作用结果。
Gas moves in the large and medium-sized airways by bulk flow(i.e., convection), meaning that the gas molecules travel together at a given mean velocity according to a driving pressure gradient. Flow is through multiple generations of bronchi, and the net resistance falls with each division. After the 14th generation, airways merge with alveoli and participate in gas exchange (respiratory bronchioles). The cross-sectional area expands massively(trachea, 2.5 cm2; 23rd generation bronchi, 0.8 m2; alveolar surface, 140 m2), resulting in a sharp drop in overall resistance. Because the number of gas molecules is constant, the velocity falls rapidly, which by the time the gas enters the alveoli is miniscule(0.001 mm/s); it is zero when it reaches the alveolar membrane. The velocity of the gas entering the alveolus is slower than the diffusion rates of O2 and CO2; therefore, diffusion—not convection—is necessary for transport in the distal airways and alveoli. Indeed,CO2 is detectable at the mouth after just seconds of breathholding, because of rapid diffusion and because of cardiac oscillations(i.e., mixing).
这里的velocity其实对应的是“bulk flow”和“travel together”的velocity,因此velocity翻译成“气体整体流速"更好。
我的理解:进入肺泡时,气体整体流速低于O2和CO2弥散速度,因此对末端气道和肺泡的气体运输而言,弥散(而非对流)至关重要。
困惑11. 351 左面中间
呼气使气道变得狭窄,深呼气时甚至导致气道闭合。呼气时使部分气道关闭,余下的低于FRC且高于RV之间的气体量称为闭合气量(CV),CV和RV的总量称为闭合容量(CC,即气道发生闭合时肺的总容积)。在呼气时发生气道闭合很常见,PPL升高会增加气道闭合,尤其用力呼气时。当PPL超过PAW时,气道(如果能塌陷)将会闭合,而且经常在肺底部最先开始,因为底部的PpL最大(图13.7)。
Expiration causes the airways to narrow, and deep expiration can cause them to close. The volume remaining above RV where expiration below FRC closes some airways is termed closing volume (CV), and this volume added to the RV is termed the closing capacity(CC; i.e., the total capacity of the lung at which closing can occur). Closure of airways during expiration is normal and is potentiated by increasing PPL, especially with active expiration. When PPL exceeds the PAW, the airway—if collapsible—will tend to close, and this usually commences at the bases because the basal PPL is greatest(see Fig. 13.7).
我的理解:呼气时(尤其用力呼气时)气道闭合很常见,PPL升高会增加气道闭合。当PPL超过PAW时,可塌陷气道将趋于闭合,而肺底部常最先开始,因为肺底部PpL最大(图 13.7)。
困惑12. 351页左边 最后一段
对麻醉科医师而言,这一重要原理主要涉及三个方面:①气道闭合与年龄相关。年轻人呼气达到或者接近RV时才发生气道闭合,而老年人在呼气时较早发生气道闭合(即肺容量较高时)。因为随着年龄增加,Ppl的平均值变得更加趋于“正数"(即大气压,等于PAW)。65~70岁时,达到甚至高于FRC时也会发生气道闭合,导致在正常呼气时,下垂部分的肺组织也会发生气道闭合。这可能是氧合作用随着年龄增加而降低的最主要原因。②仰卧位时FRC比直立位时低,但闭合容量不变。因此45岁时仰卧位呼气量为正常Vt(从FRC)可达到闭合容量,但70岁时仰卧位即发生持续的气道闭合(图13.9)。③COPD患者气道闭合时的肺容积增加,而气道水肿时可能会使之加重,增加支气管张力。
Three applications of this important principle are of key relevance to anesthesia. First, airway closure depends on age: in youth, the closure does not occur until expiration is at or near RV, whereas with older age, it occurs earlier in expiration (i.e., at higher lung volumes). This occurs because PPL is on average more “positive" (i.e., atmospheric, equal to PAW) as age increases. Closing can occur at or above FRC in individuals aged 65 to 70 years,such that dependent regions will undergo closure during normal expiration. This may be the major reason why oxygenation decreases with age. Second, in the supine position, FRC is less than when upright, but CC is unchanged; therefore, exhalation of a usual VT(from FRC)encroaches on CC in a supine 45-year-old, and closure may be continuous in a supine 70-year-old(Fig. 13.9). Finally, COPD increases the lung volume at which closure occurs, possibly exacerbated by airway edema and increased bronchial tone.
修改:
1.
Three applications of this important principle are of key relevance to anesthesia.
relevance有“意义"的意思,所以第一句话,
我的理解:该重要原则的3项应用对麻醉实践意义重大
2.我的理解:65~70岁时,肺容量在等于甚至高于FRC时就会气道闭合,导致正常呼气时,肺下部就会气道闭合。
3.我的理解:因此45岁仰卧位时,从FRC位呼出通常的潮气量(VT)时会达到CC,而在70岁仰卧位时,无论是否呼气,肺容量都可能持续位于CC位
4.我的理解:COPD患者,气道闭合时肺容积增加,而气道闭合又可能会因气道水肿、支气管张力增加而恶化。
困惑13. 352页,灌注下面那段
肺循环与体循环不同,肺循环压力比体循环压力低5~10倍,且血管更短更宽。特别低的血管阻力有两方面的重要影响:①与全身毛细血管的稳定血流相比,肺毛细血管中的血流是波动性的,②由于不受高的静水压影响,毛细血管壁和肺泡壁可以足够薄,改善气体扩散(即交换)的同时又限制了血浆或者血液渗漏到肺泡中。但肺动脉(或肺静脉)压突然增加会导致毛细血管断裂,缓慢增加(即持续数月甚至数年)则促使血管重构[551,血管重构或许能预防肺水肿(或许也能预防肺损伤),但气体护散可能受损。
The pulmonary circulation differs from the systemic circulation: it operates at a five to tenfold lower pressure, and the vessels are shorter and wider. There are two important consequences of the particularly low vascular resistance.First, the downstream blood flow in the pulmonary capillaries is pulsatile, in contrast to the more constant systemic capillary flow.Second, the capillary and alveolar walls are protected from exposure to high hydrostatic pressures; therefore, they can be sufficiently thin to optimize diffusion (i.e., exchange) of gas but not permit leakage of plasma or blood into the airspace. Whereas an abrupt increase in the pulmonary arterial (or venous) pressure can cause breaks in the capillaries,slower increases (i.e., months to years) stimulate vascular remodeling.This remodeling might protect against pulmonary edema56 (and possibly against lung injury), but diffusion will be impaired.
这么翻译,逻辑有问题,由于有therefore,有因果关系。有因果关系的,只有they can be sufficiently thin to optimize diffusion(i.e., exchange)of gas,而but not permit leakage of plasma or blood into the airspace不应该属于这个因果关系内的,所以我觉得应该是:其次,毛细血管壁和肺泡壁受到的流体静水压较低,所以无需厚壁就能防止血浆或血液漏入肺泡,而因此它们可以足够薄以优化气体的扩散(即交换)。我觉得这么理解,逻辑才是正常的
我的理解:由于不受高的静水压影响,毛细血管壁和肺泡壁可足够薄(以改善气体扩散,即气体交换)的同时限制血浆或血液渗漏到肺泡中。
这么翻译的话,限制血浆或者血液渗漏到肺泡中的原因就是不受高的静水压影响,而原来的翻译把限制血浆或者血液渗漏到肺泡中的原因翻译成毛细血管壁和肺泡壁可以足够薄,这就不对了
困惑14:352页 最后一段
一些重要的实验重新考虑了重力的影响。在同一重力水平上,每单位肺组织里,肺尖的血流量比肺底少。因此,微球分析方法证实,在相同重力平面上肺血流量存在显著差异,无论患者处于俯卧位或仰卧位,肺高度似乎都不足血流分布的10%。此外水平方向的不均匀性要比垂直方向的不均匀性更明显(图13.11)。其他实验也表明,中央区域(与外周相比)肺组织的灌注更占优势,呼气末气道正压(PEEP)可逆转这种分布。尽管因肺血管呈放射状,外周的血管较长,可以解释这种中心-周围差异,但也有专家认为该因素影响并不显著。最后,有研究认为是由于肺不同区域中局部血管阻力不同。
Key experiments have reconsidered the effects of gravity.Blood flow measured in the same gravitational plane was less per unit of lung tissue at the apex than at the base. In addition, microsphere assessment demonstrated significant variability within iso-gravitational planes, and lung height appeared to account for less than 10% of the distribution of flow in either the prone or supine positions.In addition, inhomogeneity in the horizontal planes can exceed that in the vertical direction (Fig. 13.11).Other studies have reported a preponderance of perfusion to the central lung(versus peripheral)tissue,which can be reversed by the application of positive end-expiratory pressure (PEEP).Although greater length of radial blood vessels was considered to explain this central-peripheral difference, others have suggested that it is not significant.64 Finally, differences have been reported among lung regions in local vascular resistance
我的理解:
1.一些重要实验重新评价了重力效应。
2.肺高度对血流分布的效应,似乎都不足10%
3.相对于外周肺区,中央肺区的灌注更多
困惑15:353 图13.11
图13.11 仰卧位和俯卧位时(腹侧和背侧)的血流分布图。不管体位如何,从腹部到背部血流分布相似,说明血流分布是由解剖结构决定的,而不是由重力因素决定的。俯卧位(或仰卧位)时血流分布的变化(即非重力性的不均匀)远大于俯卧位与仰卧位(即重力性的不均匀)之间血流分布的差异
Distribution of blood flow (ventral, dorsal) in supine versus prone position. The distributions from ventral to dorsal are similar, irrespective of position, suggesting that the anatomic features (and not simply gravity) determine the distribution of flow. The magnitude of the variability in either the prone (or in the supine) position (i.e., nongravitational inhomogeneity) is far greater than the differences in distribution between the prone and the supine positions (i.e., gravitational inhomogeneity).
我的理解:
仰卧位和俯卧位时(腹侧和背侧)的血流分布图。不管哪种体位,从腹部到背部血流分布相似,说明解剖结构(而不只是由重力)决定肺血流分布。无论是俯卧位还是仰卧位,(单一体位下)肺内部血流分布差异(即非重力性的不均匀)远大于体位变化(俯卧位与仰卧位的变化)形成的血流分布差异(即重力性的不均匀)
困惑16:353 左边中间偏上
尽管研究肺灌注的方法复杂,观点也很多,但综合数据表明,重力以外的其他因素造成了灌注分布的不均匀性。
Although the methods to study lung perfusion are complex—and there is a spectrum of opinion—the aggregate data suggest that factors other than gravity contribute to the heterogeneity of the distribution of perfusion.
other than通常用来表示“除……之外",它包含的意思是除了提到的特定事物或情况之外的其他事物或情况,有包含的意思
我的理解:
尽管研究肺灌注的方法复杂,如何研究的观点也很多,但综合数据表明,重力以外的其他因素也造成了灌注分布的不均匀。
困惑17:353 左边中间偏上
血流的不均匀分布可能比重力的影响更重要。灌注不均匀模式意味着在任何给定的区域内,相邻组织之间都可能存在血流的“空间相关性"(相似性)。
Fractal distribution of blood flow may be more important than the influence of gravity.A fractal pattern of perfusion means that in any given region, there will be“spatial correlation" (similarity)of the blood flow between neighboring regions.
我的理解:
相比重力,血流的分形分布可能对整体血流分布更重要。任一特定区域,灌注的分形模式意味着相邻肺区间的血流存在“空间相关性"(相似性)
困惑18:354页,左边第2段
随着年龄增加,肺弹性组织减少,FRC增加,与向外的胸壁力量相反,肺弹性回缩力降低,肺容量增加。COPD时,慢性气体潴留,弹性组织显著减少,FRC随着年龄发展的速度可能加快。肺纤维化疾病患者FRC下降,有时低至1.5L(图 13.4)。肺切除也会降低FRC,但是剩余的肺组织会扩张,补充部分容量,称为代偿性肺气肿(见第53章)。
FRC increases with age as elastic lung tissue is lost; this reduces the lung recoil force countering the outward chest wall force, and the lung assumes a higher volume. The rate of this aging process is accelerated in COPD because of the contributions of chronic air trapping and marked loss of elastic tissue.FRC is reduced in fibrotic lung diseases,sometimes to 1.5 L (see Fig. 13.4). Lung resection also reduces FRC, but the remaining lung will expand to fill the lung tissue void partially; this is called compensatory emphysema (see Chapter 53).
1.this指代elastic lung tissue is lost
我的理解:随增龄FRC增加,这是因为弹性肺组织逐渐丢失,导致减弱肺的弹性回缩力,无法有效对抗向外的胸壁弹性阻力,从而肺容积增加。
2.我的理解:COPD时,由于慢性气体潴留和弹性组织显著减少,随增龄FRC增加的速度会加快。
困惑19:355页右面 中间一段
在麻醉期间,呼吸系统(包括肺和胸廓)的静态顺应性由平均95 ml/cmH2O降至60 ml/cmH2O。大部分研究表明,与清醒时相比,麻醉期间肺顺应性降低。汇总大量研究的综合数据也证实,静态顺应性平均值的下降与麻醉有关,从接近190ml/cmH2O降至约150 ml/cmH2O。呼吸阻力变化的数据仍不清楚。尽管大部分研究表明麻醉增加呼吸阻力,尤其是机械通气时,但尚无研究对肺容量和气流速度(都明显影响阻力)进行校正,可能是因为容量(即FRC)减少仅引起阻力变化(图13.13)。
Static compliance of the total respiratory system (lungs and chest wall) is reduced on average from 95 to 60 mL/cm H2O during anesthesia.Most studies of lung compliance during anesthesia indicate a decrease compared with the awake state, and pooled data from several studies suggest that anesthesia is associated with a reduction in mean static compliance from almost 190 to approximately 150 mL/ cm H2O.Data on changes in respiratory resistance are less clear. Although most studies suggest that anesthesia increases respiratory resistance, especially during mechanical ventilation, no studies have corrected for lung volume and flow rates(both affect resistance considerably), and it is possible that changes in resistance occur merely because of volume(i.e., FRC)loss(Fig. 13.13).
我的理解:
可能是因为仅容量(即FRC)减少就会引起阻力变化(图13.13)(实际上指升高呼吸阻力)
困惑20:356页 左面 中间
约有90%的麻醉患者发生肺不张,而且与麻醉选择无关。在自主呼吸和肌松状态,无论是静脉麻醉还是吸入麻醉后都会发生肺不张。靠近膈肌位置的肺不张常占全肺5%~6%,并且极易超过20%。塌陷的肺组织总量更大,因为肺不张的区域主要由肺组织构成,而这部分肺组织的20%~40%是由正常膨胀的肺泡构成(其余为气体)。因此在手术开始前,麻醉维持期间有15%~20%的肺不张。从肺底到肺尖,肺不张逐渐减少,肺尖保持通气(图13.15)。胸科手术和心肺转流术后,肺不张的程度更加严重(超过肺容量的50%),可持续数小时。腹部手术对肺不张几乎无影响,但腹部手术后肺不张可持续数天。
Atelectasis develops in approximately 90% of patients who are anesthetized, but it is unrelated to the choice of anesthesia.It is seen during spontaneous breathing and after muscle paralysis, and with either intravenous or inhaled anesthetics.The atelectatic area near the diaphragm is usually 5% to 6% of the total lung area, but can easily exceed 20%. The amount of lung tissue that is collapsed is larger, because the atelectatic area consists mostly of lung tissue, whereas normal aerated lung consists of 20% to 40% tissue (the rest being air). Thus 15% to 20% of the lung is atelectatic during uneventful anesthesia, before surgery has commenced; it decreases toward the apex, which usually remains aerated (Fig. 13.15). However, this degree of atelectasis is larger (upward of 50% of lung volume) after thoracic surgery or cardiopulmonary bypass, and can last for several hours.Abdominal surgery adds little to the atelectasis, but after such surgery, it can persist for several days.
1.It is seen during spontaneous breathing and after muscle paralysis, and with either intravenous or inhaled anesthetics.
在这句话中,"and" 是用来连接两个不同的状态,即 "during spontaneous breathing"(自主呼吸时)和 "after muscle paralysis"(肌松后)。这里的"and" 表示的是这两个状态都可能观察到肺不张的现象,"During spontaneous breathing and after muscle paralysis" 这部分的结构是并列的,意味着谈论两个不同的时间段或情况。这两个时间段内,无论是自主呼吸期间还是肌松后,都可能出现肺不张。这并不是说肺不张只在这两个时刻之一发生,而是说在这两个不同的情境下都可能发生肺不张。
因此,这里的 "and" 是连接两个并列的时间段,表明在这两种情况下都可能观察到肺不张的现象。这并不是说自主呼吸和肌肉麻痹是同时发生的,而是说在这两个不同的生理状态下,肺不张都可能发生。
所以把"and" 翻译成“和",似乎不太恰当,容易误解为“自主呼吸且肌松状态",但是实际上我们知道“自主呼吸"与“肌松后"是相互排斥的,“肌松后"都是需要“机械通气"的,故不宜翻译成“和"
我的理解:无论自主呼吸还是肌松状态,也无论是静脉麻醉还是吸入麻醉后都可能发生肺不张。
2.The atelectatic area near the diaphragm is usually 5% to 6% of the total lung area, but can easily exceed 20%.
这句话的主干是“The atelectatic area is usually 5% to 6% of the total lung area",而“near the diaphragm"是一个介词短语,用来修饰“atelectatic area",说明肺不张区域的位置,但是它并不是直接修饰 "atelectatic area",而是整个句子的一部分,用来描述肺不张区域的一般位置。因此,整个句子的意思是肺不张的区域通常位于膈肌附近,并且这部分区域大约占总肺面积的5%到6%。
这句话如果要表达"靠近膈肌位置的不张肺面积常占全肺面积5%~6%,该这么改:The area of atelectasis near the diaphragm typically constitutes 5% to 6% of the total lung area.
我的理解:肺不张区域常位于膈肌附近,占总肺面积的5%到6%,但很易超过20%。
3.The amount of lung tissue that is collapsed is larger, because the atelectatic area consists mostly of lung tissue, whereas normal aerated lung consists of 20% to 40% tissue (the rest being air).
这句话应先理解because the atelectatic area consists mostly of lung tissue,因为肺不张区域主要由肺组织构成,再理解结果,The amount of lung tissue that is collapsed is larger所以“塌陷肺组织的面积占比更大”,所以这句话中的 collapsed 还是指atelectatic area,有个larger比较级呢,因为是和normal aerated lung做比较,所以这句话干脆反过来翻译
我的理解:正常充气的肺组织含20%到40%的组织(其余为空气),但因为肺不张区域主要由肺组织构成,所以肺组织的占比更大。
困惑21: 358页最后一行
Hypoxemia is common after anesthesia and surgery. It is enhanced by breathing oxygen before induction of anesthesia and suctioning of the airway (negative pressure) before extubation of the trachea. In addition, splinting and inhibition of coughing associated with pain can cause atelectasis postoperatively. Several approaches have been tried to address such atelectasis-associated hypoxemia following surgery. Administration of 100% O2 coupled with a VC maneuver is not effective; this is probably because while the VC maneuver recruits the lung, the alveolar opening is not maintained (in fact closure is encouraged by the N2-free O2).However, a VC maneuver followed by a lower O2 concentration (40% O2 in N2) can maintain an open lung until the end of anesthesia.Oxygenation is sustained for a longer period following ventilation with 50% O2 in air (i.e., N2) compared with 100%, following cardiopulmonary bypass.In addition, use of 100% inspired oxygen before extubation increases the propensity to atelectasis and treatment of postoperative hypoxemia, considered to be due to atelectasis, is associated with better outcomes when CPAP is used instead of 100% O2.
麻醉和手术后低氧血症很常见。麻醉诱导前吸入氧气和气管导管拔出前吸引气道(负压)都会加重术后低氧血症。绷带固定以及疼痛导致的咳嗽受限都会引起术后肺不张。也有一些方法用来尝试处理术后肺不张导致的低氧血症。吸入100%的O2联合肺活量法并无效果,可能是因为虽然肺活量法使肺复张,肺泡却没有持续开放(事实是不含N2的O2促进肺泡塌陷)"。低浓度氧(40%O2与60%N2混合气)联合肺活量法可保持肺泡持续开放直到麻醉结束。心肺转流术后,与吸入100%O2比,吸入含50%O2的空气(即N2),机械通气后能维持更长时间的氧合。拔管前吸入100%O2会增加肺不张的发生率,处理肺不张引起的低氧血症时,CPAP替代吸入100%O2,预后更好。
我的理解:
麻醉和手术后低氧血症很常见。麻醉诱导前吸入纯氧和气管导管拔出前吸引气道(负压)都会加重术后低氧血症。绷带固定以及疼痛导致的咳嗽受限都会引起术后肺不张。也有一些方法用来尝试处理术后肺不张导致的低氧血症。吸入100%的O2联合肺活量法并无效果,可能是因为虽然肺活量法使肺复张,肺泡却没有持续开放(事实是不含N₂的纯氧促进肺泡塌陷)"。低浓度吸氧(40%O2与60%N2混合气)联合肺活量法可保持肺泡持续开放直到麻醉结束。心肺转流术后,与吸入100%O2比,吸入含50%O2的气体(即同时吸入50%N₂),机械通气后能维持更长时间的氧合。拔管前吸入100%O2会增加肺不张的发生率,处理肺不张引起的低氧血症时,使用CPAP而不是吸入100%O2,预后更好。
困惑22. 360页 最后一段
麻醉损伤CO2清除及血液氧合能力。呼吸受抑制引起的每分通气量(VE)下降,或者VE不变,VD/VT增加,都可导致CO2清除能力下降。单肺灌注记录已证实解剖无效腔无变化,增加的VD/VT是肺泡,已由MIGET扫描确认(图13.23)。这种较高的VD/VT可能是因为肺上部区域的肺泡压力可能超过肺血管压力(I区),从而影响肺泡间隔中的小角血管的罐注所致。由此造成的CO2清除能力受损通过增加通气量可以轻易纠正,在常规的机械通气的麻醉过程中,极少产生这种问题。
The explanation for reduced CO2 elimination is reduced minute ventilation (VE) because of respiratory depression, or where this is preserved, because of an increase in the VD/VT. Single-breath wash out recordings demonstrate that “anatomic" dead space is unchanged, indicating that increased VD/VT is alveolar and confirmed by MIGET scan (Fig. 13.23).Such high VA/Q can be explained by the perfusion of small corner vessels in interalveolar septa in the upper lung regions, where alveolar pressure can exceed pulmonary vascular pressure (zone I).The impaired CO2 elimination is most easily corrected by increasing the ventilation and is seldom a problem in routine anesthesia with mechanical ventilation.
我的理解:
1.单次呼吸冲洗测试的记录显示“解剖"无效腔无变化,表明VD/VT增加的是肺泡无效腔,MIGET扫描也证实了这一点
2.这种高VA/Q可用上肺区肺泡压力可超过肺血管压力(从而形成WEST1区),降低那里肺泡间隔内小角血管的灌注来解释。
困惑23. 361页,图13.22
Effect of inhaled anesthetics on hypoxic pulmonary vasoconstriction (HPV). A concentration of 1 MAC causes a 20% to 30% depression of HPV, and the HPV depression decreases sharply with higher concentrations. The effect is that the shunt (i.e., perfusion through nonventilated regions) will be less reduced during inhalational anesthesia. MAC, Minimum alveolar concentration
图13.22 吸入麻醉药对低氧性肺血管收缩(HPV)的影响。吸入麻醉药为1MAC时,可抑制20%~30%的HPV;吸入更高浓度的麻醉药时,HPV将急剧下降。其结果是在吸入麻醉期间,本应减少的分流(即无通气区域的灌注)得不到减少。MAC,最低肺泡有效浓度(From Marshall BE. Hypoxic pulmonary vasoconstriction. Acta Anaesthesiol Scand Suppl. 1990;94: 37-41.)
我的理解:本应减少的分流(即无通气区域的灌注)未有应有的减少
困惑24. 362页 左面第三段
静脉血掺杂的程度依赖于吸入氧浓度(FiO2)。FiO2越高,低V/Q区域越少。但是随着 FiO2增加,低 V/Q 区域的肺可能因为气体吸收而发生塌陷,变成分流区。一项包含45名麻醉受试者的研究表明,真性分流与低V/Q区灌注的总量和静脉血掺杂之间具有良好的相关性(图 13.24)。“氧分流"或者静脉血掺杂的推导见框 13.2.
The extent of venous admixture depends on the inspired oxygen fraction(FiO2). The higher the inspired oxygen fraction, the less there are of the low VA/Q regions. However, with high FiO2, regions with low VA/Q may collapse because of gas adsorption and be transformed to shunt regions.A good correlation between venous admixture versus the sum of “true" shunt and perfusion of low VA/Q regions was seen in a study involving 45 anesthetized subjects(Fig. 13.24). Derivation of the “oxygen shunt" or venous admixture is shown in Box 13.2.
FiO2越高,低V/Q区域越少?怎么理解?
高FiO2意味着吸入的气体中含有更多的氧,这有助于提高血液中的氧含量,即使在通气不良的区域也是如此。因此,当FiO2越高时,由于吸入的氧增多,低VA/Q区域对整体氧合的影响就越小,因为血液中的氧气含量得到了提高,所以不是“FiO2越高,低V/Q区域越少",而是“FiO2越高,对低V/Q区域损害氧合的代偿效果就越好",由于是接着第一句话的,所以第一句话也要修改
我的理解:对静脉血掺杂损害氧合的代偿程度依赖于吸人氧浓度(FiO2),FiO2越高,代偿低V/Q区域损害氧合的效果就越好
“氧分流"最好还是改成:“因高浓度吸氧形成的分流"
困惑25. 363页 左边最后一段
仰卧位和麻醉的共同作用导致FRC显著降低。Heneghan等研究直立位时麻醉诱导对FRC的影响,发现半卧位和仰卧位时氧合没有差异。降低心输出量和加重血流的不均匀分布,可超过任何体位的影响。半卧位时,较低部位的肺组织灌注(可能有通气或未通气)实际上可能已经增加了。已证实,侧卧位时不同位置(高低)的肺组织之间的呼吸力学、静息肺容量及肺不张形成均有差异,这种差异导致V/Q更加紊乱,氧合严重受损。而且,个体间还存在极大的不可预测的差异。采用同位素技术证实,麻醉期间使用肌松药的患者在侧卧位时V/Q失调加重,在俯卧位时得到改善。另外,俯卧位时,灌注在垂直方向的分布差异也变得不明显,反映血管结构有局部差异,这种差异促使背部组织灌注良好,无论其是否处于低垂部位。最终,俯卧位时麻醉患者的通气分布可能更加均匀。
FRC is reduced dramatically by the combined effect of the supine position and anesthesia. The effects on the FRC of inducing anesthesia in the upright position were tested by Heneghan and associates,and there was no difference in oxygenation in the semirecumbent versus supine position.Decreased cardiac output and inhomogeneity of blood flow can outweigh any effects of posture. Fractional perfusion of the most dependent lung regions—likely poorly or not ventilated—may actually have been increased in the semirecumbent position. In the lateral position, differences in lung mechanics, resting lung volumes, and atelectasis formation between the dependent and nondependent portions of the lung have been demonstrated and shown to result in further disturbance of the ventilation-perfusion match, with severe impairment in oxygenation. However, there are large and unpredictable inter-individual variations. Using isotope techniques, an increase in ˙ VA/˙ Q mismatch was also demonstrated in anesthetized, paralyzed patients in the lateral position, and an improvement was noticed in the prone position. In addition, the vertical inhomogeneity of perfusion distribution is less marked in the prone position, possibly reflecting regional differences in vascular configuration that promote perfusion of dorsal lung regions, regardless of whether they are in a dependent or nondependent position. Finally, distribution of ventilation may be uniform in anesthetized subjects when prone.
1.既然“测试了在直立位进行麻醉诱导对功能残气量(FRC)的影响",怎么能“结果发现在半卧位与仰卧位之间氧合没有差异"?
必须要去看原文
The theory, that the decrease in lung volume which occurs after induction of general anaesthesia is the cause of the higher(PAO2–PaO2)during anaesthesia, was examined in 18 patients. Lung volume was increased during anaesthesia by changing the posture of the patient to 30° head-up, but there was no improvement in(PAO2–PaO2). There were no correlations between change in (PAO2–PaO2) and in cardiac output between different postures. It is concluded that gas exchange is independent of change in lung volume during anaesthesia, at least over the range examined. It remains possible that restoration of lung volume to pre-anaesthetic values may not restore regional distribution of ventilation to pre-anaesthetic values.
这里只谈到头高30度
这里显示:平卧位和头高30度
我的理解:Heneghan等研究麻醉诱导后体位对FRC的影响,发现半卧位和仰卧位时氧合无差异。
2.Decreased cardiac output and inhomogeneity of blood flow can outweigh any effects of posture.
any effects指什么?
Decreased cardiac output and inhomogeneity of blood flow can outweigh any effects of posture. 这句话是接在The effects on the FRC of inducing anesthesia in the upright position were tested by Heneghan and associates,and there was no difference in oxygenation in the semirecumbent versus supine position.后面的,那Decreased cardiac output and inhomogeneity of blood flow can outweigh any effects of posture中的effects就是指oxygenation
但any effects就是指体位变化可能对肺功能的任何影响,包括但不限于氧合(oxygenation)。这里所说的“肺功能"是一个广泛的概念,它不仅包括氧合,还涉及到肺的通气功能、换气功能、肺容量、气道阻力等多个方面
我的理解:全身麻醉时,心脏输出量减少以及血流的不均匀性可能比体位改变对肺功能的影响更重要。
3.半卧位时,较低部位的肺组织灌注(可能有通气或未通气)实际上可能已经增加了。已证实,侧卧位时不同位置(高低)的肺组织之间的呼吸力学、静息肺容量及肺不张形成均有差异,这种差异导致V/Q更加紊乱,氧合严重受损。
Fractional perfusion of the most dependent lung regions—likely poorly or not ventilated—may actually have been increased in the semirecumbent position. In the lateral position, differences in lung mechanics, resting lung volumes, and atelectasis formation between the dependent and nondependent portions of the lung have been demonstrated and shown to result in further disturbance of the ventilation-perfusion match, with severe impairment in oxygenation.
怎么翻译Fractional perfusion?
Fractional perfusion通常翻译为“分数灌注"或“局部灌注分数"。这个术语用来描述肺内特定区域的血流量与全肺总血流量的比例。在肺的通气-灌注匹配研究中,这个概念非常重要,因为它涉及到血液在肺内不同区域的分布情况。
侧卧位时不同位置(高低)的肺组织之间的呼吸力学、静息肺容量及肺不张形成均有差异,这种差异导致V/Q更加紊乱,氧合严重受损?不能理解?“有差异---就导致V/Q更加紊乱,氧合严重受损"这个逻辑好像不对啊?
差异:在侧卧位时,由于重力的作用,肺的重力依赖区和非重力依赖区在肺力学、静息肺容积和肺不张方面存在差异。这些差异是由于肺重力依赖区受到更多的压力,导致肺泡可能更易塌陷(肺不张),而肺泡塌陷的区域通气会减少。
干扰通气-灌注匹配:正常情况下,通气和灌注在肺内的分布是相互匹配的,这意味着气体交换的效率最高。但是,当存在肺不张或其他导致通气减少的因素时,那些区域的血液灌注如果没有相应减少,就会导致VA/Q比例失调。具体来说,如果一个区域的通气减少或停止,但血流仍然存在,那么这个区域的VA/Q比就会降低,导致血液流经这些区域时氧气无法有效地被吸入血液中,同时血液中的二氧化碳也无法有效地被排出。
氧合受损:由于通气-灌注匹配的干扰,那些通气减少的区域无法有效地进行气体交换,导致整体的氧合能力下降。如果这些区域的血流灌注没有相应减少,那么这些区域的血液就会带着未充分氧合的血液离开肺部,进入全身循环,从而导致动脉血氧分压下降,这就是所谓的氧合受损。
总结来说,侧卧位时肺部的依赖部分和非依赖部分之间的差异,导致了通气-灌注匹配的干扰,因为通气减少的区域(依赖部分)的血流灌注没有相应减少,导致这些区域的血液未能充分氧合。这种不匹配的结果是,全身循环中的氧合血减少,从而可能导致组织缺氧,表现为氧合受损。这种氧合受损在临床上可能表现为低氧血症,严重时可能需要额外的氧气支持或呼吸干预。
所以理解后,
干脆把“差异"翻译成动词“恶化",
further这个单词也没有必要翻译出来,因为前面没有类似内容,就不该有比较
with severe impairment in oxygenation并不是与disturbance of the ventilation-perfusion match完全并列的,而是进一步描述了disturbance of the ventilation-perfusion match的后果。with severe impairment in oxygenation是个伴随状语,用来说明这种通气-灌注匹配干扰的严重后果,即氧合能力受到了严重影响。
所以,虽然两者逻辑上紧密相关,但with severe impairment in oxygenation更多地是在描述通气-灌注匹配干扰的结果,而不是与它并列。这个部分可以翻译为“这种干扰导致氧合能力受到严重影响",这样的表达能够清楚地传达出原文的意思。
我的理解:半卧位时,重力依赖肺区最低位(可能有通气或未通气)的局部灌注分数实际可能已增加。侧卧位时,因重力作用,相比非重力依赖区,恶化了重力依赖肺区的肺力学、静息肺容积和肺不张,干扰正常的通气-灌注比,最终严重损害氧合。
困惑26. 368 左面最后一段
分流与VQ失调常混淆。尽管V/Q为0时(有一些灌注但无通气)就构成分流,但低V/Q和分流有两个明显的重要区别:①分流的解剖与低V/Q有区别。低V/Q区以气道和血管狭窄为特征,导致一些区域通气和血流减少,而另一些区域相应增加。例如阻塞性肺疾病和血管疾病。分流...