集微网消息,7月27日,《自然·通讯》期刊在线发表了北京航空航天大学集成电路与工程学院张悦副教授、赵巍胜教授课题组的最新科研进展《Field-free spin-orbit torque-induced magnetization switching in a ferrimagnetic layer with vertical composition gradient》。

该工作首次在面内对称的单层磁性材料中实现了无外磁场辅助的自旋轨道矩(SOT)驱动垂直磁矩翻转,为实现高密度、高速、低功耗自旋电子器件提供了一条新的技术路线。

打开网易新闻 查看更多图片

据介绍,北航团队首先基于SOT效应提出多种耦合方式,如SOT+STT、SOT+电压调控磁各向异性(VCMA)等,可以有效降低功耗。

为进一步提高器件写入速度,反铁磁和亚铁磁材料近年来成为研究焦点。其中,亚铁磁材料兼具铁磁材料的易观测性和反铁磁材料的超快动力学特性,研究利用SOT翻转垂直磁化的亚铁磁材料对发展下一代高性能自旋芯片有重要意义。然而传统方式下,SOT驱动垂直磁矩翻转通常需要引入外磁场打破其反演对称性,这严重影响自旋电子器件的能效和可集成性。

北航团队在CoTb亚铁磁合金薄膜中创新地引入了垂直方向的元素浓度梯度,利用SOT和Dzyaloshinskii-Moriya interaction(DMI)效应实现了无外磁场辅助的垂直磁矩翻转。实验表明CoTb薄膜内部的有效自旋霍尔角和浓度梯度存在正相关关系,当浓度梯度达到0.07时,其有效自旋霍尔角能达到0.06。

此外,浓度梯度也增强了CoTb薄膜内部的体DMI效应,该效应在磁矩翻转过程中发挥了重要作用。结合SOT和DMI,成功实现了无外磁场辅助的垂直磁矩翻转,磁矩临界翻转电流密度在1010A/m2量级,相较于传统重金属/磁性层的结构降低了一个数量级。微磁学仿真研究进一步揭示了该翻转过程:DMI有效场诱导器件边缘的磁矩倾斜,并在SOT的同步作用下形成磁畴壁,SOT驱动磁畴壁位移完成整体磁矩翻转。

本工作中的翻转机制无需外部SOT层和辅助磁场,极大简化了器件结构设计;并且不需要面内结构的对称破缺,与晶圆级器件制备工艺兼容,对大幅提升SOT自旋电子器件性能并促进其实际应用具有重要意义。

目前该工作已经得到国家自然科学基金、国家重大科技专项等项目的支持。(校对/若冰)