Github标星3k+!这个仓库提供了靠谱的入门人工智能的路线及资料!

subtitle 统计学家 04-11 03:42 跟贴 1 条

本文为AI入门者推荐一个Github仓库,仓库推荐了一个简易的学习路线,并提供了代码和数据集下载。
一、前言

AI以及机器学习入门,初学者遇到的问题非常多,但最大的问题就是:

资料太多!!!不知道如何取舍!!!

Github上有一个仓库(标星3000+),很大程度上解决了这个问题,不但提供了学习路线,为初学者指明了学习的方向,而且所有代码和数据集都提供了下载方式。

初学者根据这个github仓库学完以后,就基本入门AI了。

入门以后,遇到问题能上网搜索解决了,也知道接下来应该学什么。

二、github仓库介绍

仓库作者黄海广(github累计star数40000+,排名世界80),另一部分由其他公益组织创作。

https://github.com/fengdu78/Data-Science-Notes

由于下载慢,黄博已经将github打包成压缩文件,可以扫码上面的黄博公众号,通过在公众号回复“DTSN”获取百度云下载链接

三、仓库目录及概述

0.math

数学基础

1.python-basic

python基础

2.numpy

numpy基础

3.pandas

pandas基础

4.scipy

scipy基础

5.data-visualization

数据可视化基础

6.scikit-learn

scikit-learn基础

7.machine-learning

机器学习入门

8.deep-learning

深度学习入门

9.feature-engineering

特征工程入门

四、学习路线说明

这个目录其实是一个学习路线:

0——>1——>2——>3——>4——>5——>6——>7——>8——>9

1-5是个整体,6和7的顺序可以交换也可以同时学习,8属于选学部分(深度学习),9放在最后学习。

五、学习路线和内容

第一部分,数学基础学习

目录名称:0.math

数学基础:数学基础内容太多,很容易把人劝退,其实先把高等数学、概率论与数理统计和线性代数这三门课学熟了,大部分机器学习问题是能解决的。数学基础部分我放了三个资料。

第一个是当时考研和考博士复习的。数学基础,我把机器学习的部分,提炼出来。

第二、三个是今年刚翻译的CS229的线性代数和概率论,这部分是斯坦福所有人工智能有关的课程的数学基础复习材料,非常实用

这部分内容曾经有文章介绍()

第二部分,python学习

目录名称:1.python-basic

python基础:这里有个代码练习:两天入门python

目录名称:2.numpy

numpy基础:这里有2个代码练习

一、适合初学者快速入门的Numpy实战全集

二、Numpy练习题100题-提高你的数据分析技能

目录名称:3.pandas

pandas基础:这里有3个代码练习

一、《十分钟搞定pandas》:10-Minutes-to-pandas,这是十分钟搞定pandas 10 minutes in pandas的中文翻译。

二、《pandas练习题》:Pandas_Exercises,这个是pandas的练习题。

三、《pandas入门教程-2天学会pandas》:pandas_beginner

四、《pandas五十题》:pandas50

目录名称:4.scipy

scipy基础:scipy的示例代码

目录名称:5.data-visualization

数据可视化基础:这里有2个代码练习

一、matplotlib学习之基本使用

二、数据可视化的利器-Seaborn简易入门

第三部分,机器学习基础

目录名称:6.scikit-learn

scikit-learn基础:PyParis 2018: Machine learning using scikit-learn的代码翻译(截图如下:)

打开网易新闻 查看更多图片

图:代码截图

目录名称:7.machine-learning

机器学习入门,推荐4份教程,着重推荐1、2部分。

一、斯坦福大学2014(吴恩达)机器学习教程中文笔记及资源

二、李航《统计学习方法》的代码实现

内容介绍()

三、周志华老师的《机器学习》的解答--南瓜书PumpkinBook

内容介绍()

四、台大林轩田《机器学习基石》系列课程教材的习题解答

内容介绍()

目录名称:8.deep-learning

深度学习入门,推荐3份教程

目录名称:9.feature-engineering

特征工程入门,这个是项目实战部分。

一、面向机器学习的特征工程

内容介绍()

总结

本文提供了适合初学者入门AI的路线及资料下载,以上内容都整合到一个仓库:

仓库链接:

https://github.com/fengdu78/Data-Science-Notes

特别声明:本文为网易自媒体平台“网易号”作者上传并发布,仅代表该作者观点。网易仅提供信息发布平台。
Notice: The content above (including the pictures and videos if any) is uploaded and posted by a user of NetEase Hao, which is a social media platform and only provides information storage services.
打开网易新闻,阅读体验更佳
大家都在看