任何学科都是在传承、创新和应用中发展起来。理清学科发展命脉,是促进创新与应用的基础。《流体力学通论》为您全面和深入了解流体力学发展史和基本知识提供了一本全新的著作。

以下摘自刘沛清著《流体力学通论》第七章部分的内容。

随着社会的发展和工业技术的不断进步,人们对民用航空工业提出了越来越严格的环保要求,如何设计出更加绿色环保的飞机是目前航空界共同关注的焦点。国际民航组织(ICAO) 制定了航空器气动噪声审定的建议标准,美国和欧洲等基于此制定了一系列飞机气动噪声适航条例,对民用客机气动噪声水平加以限制,其中第四阶段要求2006 年以后提出适航申请的新型民用客机噪声水平应比第三阶段低10EPNdB(其中,EPN 为effective perceived noise 的缩写,称为有效感觉噪声)。有效感觉噪声级是指考虑了持续时间和纯音修正后的感觉噪声级,单位为EPNdB。飞机从观察者头顶上飞过时,噪声的音调是变化的,另外飞机噪声中的纯音成分或窄带分量以及飞越头顶时的持续时间都会影响人们对飞机噪声所感觉到的烦恼程度,因此提出了有效感觉噪声级,用于飞机噪声的评价。有效感觉噪声级的计算和测量十分复杂,一般可用A 声级加15dB 来估计。NASA 于1997 年提出10 年内降噪10EPNdB、20 年内降噪20EPNdB 的目标。除此之外,民用客机噪声水平也逐渐成为各航空公司在采购飞机时需要考虑的重要指标。这些对于我国正在研制的大型民用客机来说无疑是巨大的挑战,噪声水平成为其能否取得适航证及未来在世界航空领域占据一席之地的关键因素之一。

飞机外部噪声主要包括推进系统噪声、机体噪声和动力系统与机体的干扰噪声,如图1所示。推进系统噪声即发动机噪声,包括风扇噪声、压气机/ 涡轮噪声、燃烧噪声和喷流噪声等,属于动力噪声。机体噪声包括增升装置和起落架噪声,其和动力系统与机体的干扰噪声都属于无动力噪声。随着大涵道比涡轮风扇发动机的使用,加上如消声短舱、V 型花瓣喷嘴等降噪技术的有效应用,使得发动机噪声在整体噪声中所占比例日益减小。尤其在飞机降落阶段,在发动机处于低功率状态、增升装置和起落架全部打开的情况下,机体噪声与发动机噪声相当,甚至超过了发动机噪声,如图2和图3所示。

打开网易新闻 查看更多图片

图1 飞机气动噪声源主要部件

图2 飞机进近阶段机体和发动机各部分气动噪声比例

打开网易新闻 查看更多图片

图3 飞机气动噪声源分布(2001年9月,波音在美国蒙大拿州对全尺寸B777-200做飞行试验,试验中通过自由域麦克风和麦克风阵列测试后缘襟翼打开和发动机空置等不同状态下的气动噪声源。)

由于现代大型客机绝大部分采用带有前缘缝翼和后缘襟翼的多段翼型作为增升装置,因此在飞机降落过程中,前缘缝翼、后缘襟翼和起落架是机体气动噪声的重要噪声源。对于前缘缝翼,尾缘涡脱落和凹槽区内的不稳定脉动是其主要噪声源,不稳定脉动包括剪切层内涡与涡之间的相互作用、再循环区以及再附区附近涡与固体壁面之间的相互作用(如图4和图5所示)。对于后缘襟翼,当襟翼打开时,由于展向升力的突然改变,在襟翼的侧缘产生了强大的涡,包括高频的小尺度不稳定涡和低频的大尺度涡,这两种不同尺度的涡形成了其主要噪声源(如图6所示)。对于起落架,起落架舱是一个典型的空腔结构,空腔流激振荡不但能产生额外的气动噪声,而且会导致非定常载荷,因此钝体分离是其产生气动噪声的主要原因(如图7所示)。

图4 前缘缝翼气动噪声

图5 前缘缝翼气动噪声传播

打开网易新闻 查看更多图片

图6 后缘襟翼侧缘涡系与气动噪声

图7 起落架气动噪声

这些噪声源的相对噪声大小依具体构型而定。风洞实验(如图8和图9所示)和飞行试验一致表明:增升装置噪声在机体噪声中占据很大比例,不容忽视。针对增升装置噪声,NASA、波音、空客以及一些大学的研究机构等通过实验手段和数值模拟等对其噪声原理已开展深入研究。

图8 B777缩比模型试验(缩比26%,NASA Ames风洞气动噪声试验)

图9 全尺寸B737起落架模型气动声学试验(NASA低速气动声学风洞)

在降噪技术方面,针对增升装置和起落架也提出了一些有效的措施。例如起落架采用整流罩或表面开孔的整流罩可以降低气动噪声2 ~ 3dB。对于前缘缝翼,降噪技术可分为两类:一类是用来降低高频窄频噪声的,如前缘缝翼尾缘锯齿、前缘缝翼表面主动流动控制等,主要起到降低缝翼尾缘涡脱落的作用;另一类是用来降低低频宽频噪声的,如前缘缝翼凹槽遮挡、凹槽填充、在前缘缝翼下表面和主翼安装声衬、下垂前缘结构、前缘缝翼下表面安装多孔渗透结构等,主要起到降低凹槽内部不稳定脉动的作用。对于后缘襟翼,侧边噪声控制的主要着手点是弱化涡系结构以及减弱流场与壁面的相互干扰。按照是否向流场注入能量,降噪技术可分为被动控制技术和主动控制技术,被动控制技术是指通过改变或修正侧边的造型来降低噪声的一种手段,无需向流场注入能量,主要有以下几种:襟翼侧边加装多孔材料、襟翼侧边使用栏栅结构(fence)和连续型线法。主动控制技术是指向流场中注入能量将涡系吹离壁面,降低了涡系和壁面的相互干扰达到降低侧边噪声的方法(吹气控制)。根据现有各部件有效的降噪措施,NASA 预测的未来低噪声飞机如图10所示。

打开网易新闻 查看更多图片

图10 NASA给出的未来低噪声飞机

【相关阅读】流体力学早期发展与微积分结合

本文摘编自刘沛清《流体力学通论》(北京:科学出版社,2016.12)第七章部分《飞行奥妙与空气动力学原理》中《飞机气动噪声》的内容。

ISBN 978-7-03-051540-7

责任编辑:钱俊 鲁永芳

长按二维码可购买本书

《流体力学通论》是一本主要以传记形式编著的流体力学概论。作者参照世界著名流体力学大师普朗特著《流体力学概论》、英国著名流体力学家巴切勒著《流体动力学引论》和《中国儿童百科全书》的编著理念,结合自己多年教学体会和经验,尝试一种将自然科学与人文历史相结合、知识传承与认知规律相结合的编纂模式,将抽象深奥的流体力学知识点打碎,从直观易懂的物理概念入手,以由浅入深、由表及里的方式,将流体力学发展史和基本知识点有机结合起来,分七章将流体力学基础、空气动力学、液体动力学、计算流体力学、实验流体力学、风洞设备、飞机及其部件气动性能等基本知识和发展历史介绍给读者,以便为初学者激发兴趣点、全面了解流体力学的发展和进一步深入学习提供参考。

本书属于流体力学的科普读物,适应于热爱流体力学的所有人们,包括大专院校的教师、研究生、本科生,从事与流体力学有关的各行业的技术人员和科学爱好者,也适应于初高中的广大学生。

(本期编辑:王芳)

一起阅读科学!

科学出版社│微信ID:sciencepress-cspm

专业品质 学术价值

原创好读 科学品味

点击“阅读原文”可购买本书